欧美一级a免费放视频,欧美一级a免费放视频_丰满年轻岳欲乱中文字幕电影_欧美成人性一区二区三区_av不卡网站,99久久精品产品给合免费视频,色综合黑人无码另类字幕,特级免费黄片,看黃色录像片,色色资源站无码AV网址,暖暖 免费 日本 在线播放,欧美com

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

CP1407代做,、代寫c/c++,Java程序
CP1407代做,、代寫c/c++,,Java程序

時間:2024-12-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CP1407 Assignment 2 
 
- Page 1 - 
 
 
Note: This is an individual assignment. While it is expected that students will 
discuss their ideas with one another, students need to be aware of their 
responsibilities in ensuring that they do not deliberately or inadvertently 
plagiarise the work of others. 
 
 
Assignment 2 – Practice on various Machine Learning algorithms 
 
 
 
 1. [Data Pre-Processing, Clustering] [10 marks] 
Why is attribute scaling of data important? The following table contains sample 
records having the number of numbers and the total revenue generated by particular 
stores of a supermarket. Use the table as an example to discuss the necessity of 
normalisation in any proximity measurement for clustering purposes. 
 
Supermarket ID Employee Count Revenue 
001 38 $5,500,000 
002 29 $5,000,000 
003 24 $5,000,000 
004 10 $8**,000 
005 40 $2,500,000 
006 31 $3,200,000 
007 14 $678,000 
008 35 $5,200,000 
009 30 $5,300,000 
010 22 $5,500,000 
 
 
 
 
2. [Classification – Decision Tree algorithm] [20 marks] 
Use the soybean dataset (diabetes.arff) to perform decision tree induction in Weka 
using three different decision tree induction algorithms; J48, REPTree, and 
RandomTree. Investigate different options, particularly looking at differences between 
pruned trees and unpruned trees. In discussing your results, consider the following 
questions. 
 
a) What are the effects of pruning on the results for the soybean datasets? 
b) Are there differences in the performances of the three decision tree algorithms? 
c) What impacts do other parameters of the algorithms have on the results? 
 
3. [Classification – Naïve Bayes algorithm] [30 marks] 
Suppose we have data on a few individuals randomly examined for basic health check. 
The following table gives the data on these individuals’ health-related attributes. CP1407 Assignment 2 
 
- Page 2 - 
Body 
Weight 
Body 
Height 
Blood 
Pressure 
Blood Sugar 
Level 
Habit Class 
Heavy Tall High 3 Smoker P 
Heavy Short High 1 Nonsmoker P 
Normal Tall Normal 3 Nonsmoker N 
Heavy Tall Normal 2 Smoker N 
Low Medium Normal 2 Nonsmoker N 
Low Tall Normal 1 Nonsmoker P 
Normal Medium High 3 Smoker P 
Low Short High 2 Smoker P 
Heavy Tall High 2 Nonsmoker P 
Low Medium Normal 3 Smoker P 
Heavy Medium Normal 3 Smoker N 
 
 Use the data together with the Naïve Bayes classifier to perform a new classification for 
the following new instance. Create and use the classifier by hand, not with Weka, and 
show all your working. 
Body 
Weight 
Body 
Height 
Blood 
Pressure 
Blood Sugar 
Level 
Habit Class 
Low Tall High 2 Smoker ? 
 
 4. [Association Rules Mining] [20 marks] 
The following table film watching histories for several viewers of an on-demand service. 
 
User Id Items 
001 Airplane!, Downfall, Evita, Idiocracy, Jurassic Park 
002 Casablanca, Downfall, Evita, Flubber, Jurassic Park 
003 Airplane!, Downfall, Half Baked, Jurassic Park 
004 Airplane!, Downfall 
005 Casablanca, Downfall, Flubber, Jurassic Park, Zoolander 
006 Casablanca, Downfall, Half Baked, Idiocracy, Zoolander 
007 Evita, Idiocracy, Jurassic Park 
008 Downfall, Jurassic Park, Zoolander 
009 Casablanca, Downfall, Evita, Half Baked, Jurassic Park, Zoolander 
 
a) Follow the steps outlined in Practical 07 and conduct a mining task for Boolean 
association rules using the Apriori algorithm in Weka. 
b) Set different parameters and observe the association rules discovered. 
c) Weka provides association evaluation parameters other than support and 
confidence. Note the evaluation results by those evaluation parameters of example 
rules. 
 CP1407 Assignment 2 
 
- Page 3 - 
 
5. [Clustering] [20 marks] 
Consider the following 2-dimensional point data set presented in (x,y) coordinates: 
 P1(1,1), P2(1,3), P3(4,3), P4(5,4), P5(9,4), P6(9, 6). 
Apply the hierarchical clustering method by hand (using Agglomerative algorithm) to 
get final two clusters. Use the Manhattan distance function to measure the distance 
between points and use the single-linkage scheme to do clustering. Show all your 
working. 
 
Rubric 
 Exemplary Good Satisfactory Limited Very Limited 
 **-100% 70-80% 50-60% 30-40% 0-20% 


請加QQ:99515681  郵箱:[email protected]   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:UFUG2601代做,、代寫C++設計程序
  • 下一篇:菲律賓移民局學生簽證辦理手續(xù)(留學要準備啥材料)
  • ·代做CS-107,、java程序語言代寫
  • ·代寫EE5434,、代做c/c++,Java程序
  • ·MS3251代寫,、代做Python/Java程序
  • ·COMP4134代做,、Java程序語言代寫
  • ·代寫ENG4200、Python/Java程序設計代做
  • ·代寫I&C SCI 46 、c/c++,,Java程序語言代做
  • ·CCIT4020代做、代寫c/c++,Java程序設計
  • ·代寫COMP2011J,、Java程序設計代做
  • ·IS3240代做,、代寫c/c++,,Java程序語言
  • ·代寫CSE x25,、C++/Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析,?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 NBA直播 幣安下載

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045